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A transonic-flow theory of thin, oblique wing of high aspect ratio is presented, which 
permits a delineation of the influence of wing sweep, the centre-line curvature, and 
other three-dimensional (3D) effects on the nonlinear mixed flow in the framework 
of small-disturbance theory. I n  the (parameter) domain of interest, the flow field 
far from the wing section pertains to a high subsonic, or linear sonic, outer flow, 
representable by a Prandtl-Glauert solution involving a swept, as well as curved, 
lifting line in the leading approximation. 

Among the 3D effects is one arising from the compressibility correction to the 
velocity divergence, absent in classical works; this effect also leads to a correction in 
the outer flow in the form of an oblique line source. More important is the upwash 
corrections which includes the influence of both the near and far wakes, as well as the 
local curvature of the centre-line. For straight oblique wings, local similarities exist 
in the 3D flow structure, permitting the reduced equations to be solved once for all 
span stations. An analogy also exists between the oblique-wing problem and that of 
a 2D transonic flow which is weakly time-dependent; this provides an alternative 
method of solving numerically the inner airfoil problem. 

Solutions to the reduced problem are demonstrated and compared with full- 
potential solutions for elliptic oblique wings involving high subcritical as well as 
slightly supercritical component flows. 

1. Introduction 
Use of wing sweep to control the compressibility effect has long been a practice in 

aircraft design (Busemann 1935; Jones 1946; Jones & Cohen 1957; Kiichemann 1969). 
Consider a high-aspect-ratio wing with a given airfoil section; there is generally a 
range of sweep angle (at each span station), in which the velocity component per- 
pendicular to the (local) span is sufficiently low to permit a shock-free or nearly 
shock-free component flow, yet is close enough to the sonic speed for the maintenance 
of a high lift coefficient. I n  this sweep range lies the possibility for applying the two- 
dimensional (2D) supercritical airfoil data to aircraft design (Bauer et al. 1974; 
Nieuwland 1967; Boerstoell974; Kacprzynski et al. 1971; Whitcomb 1974). The flow 
field in this case is necessarily nonlinear and admits features characterizing the mixed 
(elliptic-hyperbolic) flow. I n  the present work, we study the three-dimensional (3D) 
structure of this nonlinear mixed flow by solving a perturbation problem and deter- 
mining its solution through matching with a lifting-line solution to an outer problem. 

The approach t.aken is that of an asymptotic theory for high-aspect-ratio planar 
wings and, therefore, shares a common base with the classical lifting-line theory 
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(Prandtl 1918; Van Dyke 1964; Ashley & Landahl 1965). Apart from the nonlinear 
mixed flow and other compressibility effects, the following development takes into 
account the influence of the wing sweep, as well as the curvature of the planform’s 
centre-line, absent in the classical work. The analysis was motivated in part by 
Jones’ (1971, 1977) works on the straight oblique wing which offers an ideal oppor- 
tunity for extending the lifting-line concept, and naturally becomes the focus of the 
present investigation. 

Similar extensions have been made earlier by the first author in the context of 
unsteady incompressible flow for a curved centre-line (Cheng 1976) and of steady 
incompressible flow for an oblique wing (Cheng 1978a, b).  The present study is carried 
out in a framework equivalent to the transonic small-disturbance approximation in 
a potential flow, with an aim of bringing about a greater simplicity in the problem 
analysis, which should greatly reduce computation work and shed light on the 3D 
structure of the transonic mixed flow. For straight oblique wings, this theory yields 
an analogy with an unsteady 2D flow of a thin airfoil in the nonlinear transonic regime; 
the formulation also admits a local similarity in the 3D structure, providing a reduction 
of the computation work for a rather useful class of oblique-wing geometries. 

An outline of the analysis concerning the similarity solutions of the oblique wings 
has been sketched in a greatly condensed note (Cheng & Meng 1 9 7 9 ~ ) .  This paper 
presents the theory in a fuller context; apart from the crucial details in the theoretical 
development, the work discusses comparisons of the analysis with computer solutions 
based on full-potent,ial equations for oblique wings with high subcritical and slightly 
supercritical component flows. The theory given is valid also for a curved centre-line 
(see requirements below) and is expected to hold also in the more conventional case 
of a symmetric swept wing (cf. figure l c ) ,  although without further treatment the 
solution is not applicable to the vicinity of the wing apex. The work is based mainly 
on material presented in an unpublished report under the same title (Cheng & Meng 
1979b), where much of the analytical detail, together with numerical data, can be 
found. 

For a straight unswept wing the 3D effect would appear mainly as a local upwash 
correction; Cook & Cole (1978) have given a rather complete elucidation of this 
problem; Cook (1978) has also studied the uniqueness of the solution to the reduced 
problem. With the wing sweep, two important features emerge. One is a significant 
upwash induced by the near-wake vorticities, which is responsible for the pronounced 
rolling moment characteristic of an untwisted oblique wing (see Jones 1977; see also 
Cheng 1 9 7 8 ~ ) ;  the other is an additional compressibility correction to the velocity 
divergence arising from the spanwise density variation (fj 2.1). On account of the 
latter feature, the flow field next to each wing section can no longer be treated as 
being planar. I n  formulating the inner problem, one would also have to consider the 
effect of the spanwise component of the near-wake vorticity. This feature does not 
appear, however, in the present analysis owing to the relatively small sweep angle 
required by the nonlinear domain (lest the inner problem becomes linear). 

An interesting development in the present asymptotic theory is the uncovering of 
an oblique line source in the third-order lifting-line theory, unsuspected in previous 
works. The effect in question arises from the spanwise compressibility correction 
mentioned and depends on the sectional lift (nonlinearly), as well as the spanwise and 
chordwise distributions of the wing thickness. I n  passing, we observe that similar 
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FIGURE 1. Illustration of the reference chord, the span and the aspect ratio used for a straight 
oblique wing (a ) ,  a more general curved oblique wing ( b ) ,  and symmetric swept wings ( c )  ; the 
shaded areas in ( c )  indicates regions of breakdown. Breakdown (non-uniformity) of the theory 
may also occur in the tip region (cf. text). 

source effects should arise in a linear problem, although the lift distributions of 
interest will not be affected (to the order of ARcl) in such a case. 

As is well known from Oswatitsch & Zierep's (1960) work, there is a weak singularity 
a t  the juncture of the shock and the curved portion of an impermeable surface, where 
the flow will undergo a re-expansion. I n  the perturbation part of the solution, this 
singularity manifests as a logarithmic singularity in the pressure distribution behind 
the shock root. A similar problem (of non-uniformity) occurs in the shock analysis 
in the context of an unsteady transonic plane flow ( 3  4.1), where the difficulty is 
compounded by other complexities in computations and has not been fully rec0gnized.t 
This problem with the re-expansion singularity is treated in $ 2 . 4 .  

I n  the following, 2b  denotes the wing span (measured perpendicularly to the main 
flow direction) and co the root chord (measured perpendicularly to the centre-line) ; 
refer to figure 1. The aspect ratio is defined as AR, = 2b/c,. We use a to characterize 
the wing camber and the angle of attack (measured from the zero-lift angle), and 
will assume that the wing-thickness ratio is also comparable to a. The local swept 
angle is A; the free-stream Mach number is Ma, and the Mach number of the free- 
stream component flow is M, = Ma cos A. Three parameters will control the reduced 
(local) problem 

K ,  = ( 1  - M:J/a*M,,, 0 = A/a*, e = l / d A R ,  (1)  

t The logarithmic singularity in the unsteady problem has been noted in a very recent work 
by Williams (1979), in which the non-uniformity has not been treated. 
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FIGURE 2. Illustration o f  the Cartesian and the orthogonal curvilinear 
co-ordinate systems in the wing plane ( z  = z' = 0). 

where E may be regarded as the reciprocal of a reduced aspect ratio, and 0 is a re- 
scaled (typical) sweep angle. The parameter K ,  is essentially the transonic similarity 
parameter written for the component flow, with the factor in the denominator taken 
as the $mi? power of M,, as in Murman & Krupp (1971); this choice allows a better 
approximation of the critical speed (cf. Q 2). The flow field next to the wing section and 
that removed from it are analysed as two asymptotically distinct (inner and outer) 
regions for E --f 0 with fixed K,, 0, and a*/&. The last quotient is fixed in order to 
simplify the remainder estimate, As it  will become apparent later in Q 3, the relative 
magnitude of O2 and K ,  will also determine whether the outer flow is (high) subsonic, 
(near) sonic, or (low) supersonic. Only the domain in which O2 < K, = O(l), 
corresponding to a high subsonic, or a linear sonic, outer flow is considered.? 

2. The inner airfoil problem 
2.1. Governing equations 

We consider a steady irrotational flow of a calorically perfect gas with a uniform 
free stream. The partial differential equation (p.d.e.) for the perturbation velocity 
potential $ can be written in Cartesian co-ordinates (x, y, x )  as 

t The special problem of a straight oblique wing has also been studied by Cook (1979), 
using oblique co-ordinates. The similitude in the 3D structure was not brought out, however. 
The far-field analysis therein also omits a line-source and other logarithmic terms. 
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where the remainder (. . . ) consists of triple and quadruple products of #, e.g. U z  4; #,,, 
etc., y is the specific heat ratio and subscripts x ,  y and z signify partial derivatives. 

For the analysis of the flow field in the neighbourhood of the wing section, referred 
to as the inner region hereafter, a right-handed curvilinear orthogonal co-ordinate 
system (x’, y’ ,  z’) will be used (refer to figure 2), in which x’ and z’ are distances from 
the centre-line (a reference curve) of the wing planform, with z’ measured along a 
normal from the wing plane. The y’ co-ordinate is then a distance measured along the 
(curved) centre-line. Writing A as the local sweep angle of the centre-line, one observes 
the following identities 

dx2 + dy2 + dz2 = d d 2  + hgdy” + dd2,  h2 = 1 - X I  dA/dy’ ,  (2.2) 

The p.d.e. (2.1) may then be expressed in the curvilinear co-ordinates with U, = U, cos A 
and M, = Mm cos A. In  anticipation of a transonic component flow, we normalize 
x’, z‘, y‘ and q5 as follows 

Except for the trivial differences of using a half chord +c0 instead of co and omitting 
factors with (y+  1)) the resulting variables can be identified with those in the earlier 
works on the small-disturbance theory of plane transonic flow (Sprieter 1953; also 
see Ashley & Landahl 1965). 

Using these variables, and eliminating (1 - M:), tan A, and co/b through K,, a*/€ 
and 0, (2.1) can be reduced to 

where 0‘ is dO/d@, the terms omitted (. . .) belong to orders €2 and a)  under the stipu- 
lation of a finite K ,  and 0, or simply order e2 for finite K,, 0 and a*/&. The pressure 
perturbation can be computed from $; as 

c;= (p-pm)/*pcou: = - 2  - $2+ ... (2.6) (ill 
subject to an error comparable to €4. The retention of the factor M, in the definition 
of K ,  and scaling factors for $ and 8, as well as the factor cos A in U, = U, COB A of 
(2.4) and (2.6), are not fundamental from the viewpoint of an asymptotic theory. 
Our preference for these choices will be explained later.? 

For the present study, we consider impermeable wing surfaces prescribed over the 
planform ~ ( y )  < 2 < &(y) as 

2’ = 4 [a&(2, 9) + a%i?,(@) +a€($ - $ O ) f ( @ ) ] ,  (2.7) 

where 6 and 8 locate the leading and trailing edge, respectively, th; s2perscripts ‘ + ’ 
and ‘ - ’ refer to the upper and lower6surfaces, respectively, and 2, 2, and f are all 
of unit order. The function I ( @ )  and Z,(g) signify, respectively, a wing twist and an 

t These factors M ,  and cos A were not used in the definitions of K,, and 2 in our earlier note 
(Cheng & Meng 1979a). 
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upward wing bending; both iB and f have been scaled in a way to allow the control 
of the three-dimensional effects (see below). The boundary condition on the wing 
can be transferred to the wing plane (2 = 0)  as 

(2.8) 
a A  

= - z* + €@$;I + €1 + . . . 
82 

where 2; is dBB/d$j and the subscript ' w ' refers to points on the wing plane bounded 
by 6 < 2 < &. We assume that in approaching the leading edge, Z* - i- const. (2 - d)*. 
Except at  the leading and trailing edges, the remainder (. . .), including errors from the 
boundary-condition transfer, belong to orders a% or E ~ ,  same as in (2.5). The pressure 
and the velocity component normal to the trailing-vortex sheet is required to be 
continuous across the sheet. These conditions are again transferred to 2 = 0 to read, 
subject to error comparable to e2, 

u$dTV = u$&TV = '3 (2.9) 

where I[ DTv signifies the difference across the trailing vortex (TV) sheet behind the 
wing. The first of (2.9) indicates that the cross-stream vorticity of the near wake is 
unimportant. The streamwise vorticity component of the near wake will, nevertheless, 
be shown in 9 3 to be very significant. 

The reduced p.d.e. comprised of all terms shown in (2.5) has the characteristics 
D = Dc($,2) satisfying (Courant & Hilbert 1965) 

K,-(y+1)$,-+2€0-  aDc = - (g)2; a$ 
(2.10) 

its existence as a real surface requires 

(2.11) 
a F  

K,-(y+1)$,-+2€0-  aQ < O* 

The limit e -+ 0 (with finite 0 and K,) determines a critical speed for the 2D component 
flow 

$$ = K,,/(y+ 1 )  = a,. (2.12) 

This identifies the transition boundary of the hyperbolic and the elliptic regions, and 
is also the locus where the 2D component velocity reaches the sonic speed - a fact 
familiar from the transonic small-disturbance theory for the plane flow. 

Partial differential equation (2.5) and the equations expressing irrotationality admit 
weak solutions with a surface of discontinuity in Vq5, say D = aD(Q,2),  identifiable 
with gasdynamic shock waves. The shock conditions admissible to the weak solution 
and consistent with Rankine-Hugonoit relations, can be written as, at  2 = DD($,2),  

( 2 . 1 3 ~ )  

II$n = 0 (2.13b) 

where, () and [ ] stand for the arithmetical mean and the jump of the quantity 
across the surface in question, respectively. The continuity of 6 (2.13b), implies the 
continuity of the tangential velocities, 
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We observe that higher-order terms delected from the coefficient of $ 6 ~  in ( 2 . 5 )  
cause incorrect description of the characteristic slopes near the transition boundary 
and are expected to lead to a non-uniformity at  some stage of the high-order expansion 
of the inner solution. This deficiency can be removed through a correction to the 
critical speed O*,  hence K,, to the basic component flow. The result can be cast in a 
form of a slightly modified definition for the similarity parameter, subject to error of 
the order (l-Jfa)2 or O(E*) (Cheng & Meng 1979b, appendix I). Namely, writing 
K ,  in (2 .5)  as 

Kk = ( 1  -Mi)/aeME, ( 2 . 1 4 a )  
with 

w = ( 4 y +  1 ) / 3 ( y +  1 ) .  ( 2 .14b)  

Since o is reasonably close to one, ranging from fj for y = 1 to 3 for y = 9, we therefore 
take o to be unity in our definition for K,. We also point out that U, = U, cos A used 
in the definition of $ and ck could be replaced by U,, incurring errors no larger than 
O(e2) or O(a*), since A = O(&) for 0 = O(1). However, its retention in the leading 
approximation of q5 and in c; has an advantage for enlarging slightly the range of 
the applicability for the sweep angle. It is shown (Cheng & Meng 19793) that, with 
the retention of cos A, 0 can be extended to 0 = O ( d )  without incurring larger errors. 

2.2.  Perturbation of the component Pow 
Equations (2.5), (2.8) and (2 .9 )  permit an expansion of $in B 

$ = $0+€$1+ ... ) (2 .15 )  

where a weak (logarithmic) dependence of $l on E is anticipated. The leading term 
$o is a 2 D  solution to the component flow at the span station satisfying the p.d.e. 
and the conditions on the x axis: 

(2.16) 

(2 .17)  

where the subscripts ‘ w ’ and ‘ TV ’ have the same meaning as before. The coefficient 
is governed by the linear non-homogeneous p.d.e. and boundary conditions in 

variables 2 and 2, obtained after equating terms proportional to the first power E :  

(2 .19)  

where +j appears essentially as a parameter. The solutions 
characteristics system 2 = 2:(fJ, 2) described by 

and $o share the same 

(2.20) 
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with the transition boundary separating the elliptic and hyperbolic being 
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for both. 
The equation describing the shock is expanded as 

D = Do(@, 2 )  = %($, 5 )  +€2?(@, 2 )  + . . . , (2.21) 

allowing again a weak (logarithmic) dependence of on e.  The jump relations (2.13) 
can be transferred from 2 = gD to D = @, yielding, after equating terms of equal 
algebraic powers of e,  

(2.22) 

As noted earlier, the subcritical flow right behind the shock root over a curved 
(wing) surface has a weak singularity in the surface value of ($o)z like 

($--)In 12-5$’1, 

this will then give a logarithmic singularity in $G, in view of the jump condition (2.23). 
This non-uniformity is discussed in 3 2.4. 

2.3. Behaviour at large distance 
Since a$o/aD vanishes as = (a2+ K,P)+ --f 00, p.d.e. (2.16) under K ,  > 0 approaches 
a Laplace equation in D and 9 = Ki2;  the leading term in an asymptotic expansion 
for $o a t  large may therefore be represented by a vortex potential in the variable 

= D + i i g .  This and the successive terms in the development of $o for If1 B 1 can be 
inferred from p.d.e. (2.16) under the requirement that ($o)a and ($o),, are continuous 
everywhere including the 2 axis (removed from the wing section) 

+[4D+BbKf5IE 1 +..., 
(2.24) 

where Po = is the circulation determined by the potential jump at  the trailing 
edge (TE), and the remainder (. . .) is at  most of the order (In IfI-2. The coefficients 
.@ and & may be taken as the real and imaginary parts of a complex doublet strength 
Bo = &+i& they are functionals of [($o),.,, [$], and ($J2, unaffected by the 
presence of an imbedded shock. A form comparable to (2.24) has been given earlier 
by Cole (1975). For numerical analysis, the explicit forms for the doublet strengths 
are unnecessary, since they can be determined along with solutions at  and near the 
far boundary, with the help of a least-square method (4 5 ) ,  as has been done in Hafez & 
Cheng (1977a, b ) .  
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The p.d.e. (2.18) governing $l approaches a Poisson equation at large It\, providing 
the two leading terms in the expansion of A. These and the successive terms fulfilling 
the continuity requirements on 6s and 4; can be determined, for 9 1, as 

0 2  [( d 1 KO 0' ) e0 +---]-e;K!a+e;l @@'Po 22 

41-3 n @ + 2 K , Q %  2n1512 

(2.25) 

where c1 is [qQTE; 2: and correspond, respectively, to the induced upwash and 
a component-Mach-number correction to be determined later through matching; the 
parameter KO = Kn - 0 2  can be identified as the transonic similarity parameter a t  
zero sweep (1  - M2,)/afMm. The remainder (...) vanishes as 151 -+ co, and the symbol 
8, designates terms arising from nonlinear corrections in the far field of order (In 
In I PI, and unity: 

(2.26) 

where p, is the complehx conjugate of 5. The appearance of the source term in the far 
field with a strength &,# 0 should not be too surprising, since (2.18), cast into a 
Poisson equation 

(2.27) 

indicates clearly a source distribution which leads to a non-vanishing total volume 
flux to the component flow. 

The influence of this term on the outer flow is quite similar to the one in the tran- 
sonic equivalence rule involving lift (Cheng & Hafez, 1975) although the line-source 
effect has a considerably greater influence therein. The source strength is Frn- 
pletely determined by the far-field property of j?o, more specifically, @ and (iI'o)2. 
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In  the case where 
over 2 and 7 can be correctly equated to the total volume flux and determined as 
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can be neglected, the area integral of right-hand side (2.27) 

(2.28) 

A 

confirming the existence of a Q1 =+ 0 (unIes%& or the wing thickness vanishes). For 
Po + 0, (2.25) shows that 9 In I f 1  and Q1 in this case cannot be evaluated simply 
from the area integral of right-hand side (2.18)) which may be unbounded; the quantity 
of interest may nevertheless be determined by constructing first functions and 
$lc which satisfy two Poisson equations and agree with $o and respectively, in 
the far field in accordance with (2.24) and (2.25); and applying next a result of Green's 
theorem to the difference of ($o+~$l) and ($oc+~$lc) .  Using (2.13), the result can be 
%horn to be unaffected by the presence of shocks. The explicit relation connecting 
Ql to 8: and (F0)2 will be given in 3 4 in the case of straight oblique wings under local 
similarity (its derivation is described in appendix 111, Cheng & Meng 19793). 

The demonstration in ( 2 . 2 8 )  indicates that similar line-source effect will arise in the 
corresponding lifting-line theory in a linear subsonic flow, although the lifting and the 
thickness problems in this case can be separately analyzed on account of the linearity. 

are uniquely determined after fulfilling 
the Kutta condition a t  the trailing edge, the conditions (2.17)) (2.19), (2.22), (2.23)) 
and the far-field behaviour represented by the leading groups of terms on right- 
hand side (2.24) and right-hand side (2.25). The latters are 

It is assumed that the solutions $o and 

The first of (2.29) is equivalent to the vanishing of the gradient of $o and the second 
requires the specifications of the upwash and component Mach number corrections. 

2.4. The non-uniformity at the shock root 

Recall that the logarithmic singularity in ($l)n is a result of the break down of the 
analytic continuation of (($o)z) from the perturbed to the unperturbed shock boun- 
daries, cf. (2.23). It is apparent that terms like &6$')2($o~s~) and 5?2($l~~) will arise 
in the corresponding shock relations in the next order. This and similar reasons lead 
to the expectation that ($2)2 is singular like 1/9, (a/a2) $3 singular like 1/e2, and so on. 
Thus a non-uniformity of the expansion (2.19) is identified at  2-2: = O(B). 

It is quite readily shown ( 5  2.6, Cheng & Meng 19793) from the composite system 
(2.5), (2.8)) (2.9) and (2.13a, b )  that the form of re-expansion singularity in $2) written 
in co-ordinates fixed to the shock root, is unaffected by the 3D (as well as unsteady) 
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influence. This description can, therefore, be identified with the (inner) solution 
pertaining to  the vicinity of the shock root. Let 

(2.30) 

where the subscript ‘sr’ refers to the shock root and (2;) abbreviates for a2d*/aB2. 
The description of a = $2 in question is, < 1, 

( 2 . 3 1 ~ )  

where ‘ + ’ refers to the post-shock condition. The corresponding form for the shock 
geometry is 

(2.31b) 

where K ,  is an undetermined constant which is related to the location where the speed 
becomes a maximum, and ,u is a constant determined by [a],,, (.ZL)*,, (Zh)sr and the 
pre-shock value of $&. The above results indicates that 3D (or unsteady) influence 
on the local structure of the pressure field can result only through changes in the three 
parameters, namely, [a],,., &,, and 5,. A formal development for a small perturbation 
in $2 in these three parameters a t  a fixed 2 and 2 then yields from (2.31) 

where 9, d, d,, etc., are known functions of [a],,., 2; and the perturbations of the three 
parameters mentioned. This can be matched with the logarithmically singular field of 
€($,),, permit,ting the final determination of the corrected values of f&J8,., 2,, and K,. 

3. Outer solution and matching 
3.1. The outer solution 

I n  the flow domain of interest (02 < K ,  = O(1)) the basic outer flow is described 
by the linear, elliptic Prandtl-Glauert equation. For subsequent analysis, we shall 
employ a set of dimensionless variables 

if = x/Bb, jj = y / b ,  Z = z / b ,  $ = 2q5/o$Umc0, (3.1) 

q5 = g o + & + . . . ,  ( 3 4  

with B = (1 - H%)* and a, = a/lcIa, and assume an expansion for a dimensionless 
perturbation potential 

where a weak (logarithmic) dependence of q5, on E is anticipated. The term €3, accounts 
for the higher aspect-ratio effect as well as the nonlinear correction to the outer solution. 
Partial differential equation (3.1 ) yields equations governing q50, q5,, . . . 

- 

- -  

I 
(3.3) 
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In  the far field, the gradient of $,, gl, etc., are required to vanish, and on the wing 
trace behind the centre-line, the continuity of the pressure and normal velocity across 
the trailing-vortex sheet dictates that the partial 5 and Z derivatives of ?, and g1 
be continuous there. 

The 3, is the velocity potential for a lifting line, representing the bound and trailing 
vortex system associated with the centre-line x = e(y): 

where R, = [(Z - Zc(jj1))2 + (jj - jj1)2 + 31). 

3.2. The lifting-line solution in the inner limit 

In  approaching the centre-line, i.e. E = X - Z,(jj) + 0 , 2  -+ 0, the integrand shown in 
(3.4) becomes nonintegrable a t  ijl = g .  By subtracting a suitable function, say 9, 
from the integrand, the resultant integral may then yield a limit as g and Z vanish. 
This, together with the quadrature of g ,  gives the behaviour of $, in the inner limit 
sought. This procedure has been used in the analysis for straight oblique wings 
(Cheng 1978~)  b). Among the indefinite integrals involved (described in more detail 
in Cheng & Meng 1979b), the following two are basic 

where go (+  b,), Co ( + c,), @ and R are 

6, = -TEE/( 1 + %2), E ,  = (E2+Z2)/(1+E2), ci = (E-i%2)/(l+E2)*, ( 3 . 6 ~ )  

R = (u2+26,u++,)*, x = P+i&, (3.6b) 

P = E,+~,U-R.P.~:R, Q = Z ( ~ , + U ) - I . P . ~ ~ R .  ( 3 . 6 ~ )  
with 

The equation X = X,(g) defines the centre-line in the Prandtl-Glauert variables. 
To arrive at a suitable form for matching with the inner solution, the result for 

small 5 = Z- X&) and Z is first transformed to a system of curvilinear orthogonal 
co-ordinates ( 2 ,  jj‘, 2‘)) with Z‘ = X, and the curved g’ axis identified with 5 = Z&). 
This is followed by a transformation to the inner variables 9,2 and 9. The final result 
for 3, in the inner limit is 

@2@‘F0 23 

2Ki 2n Ipp +€--- + €  p 2 +  ..., ( 3 . 7 4  

where the remainder is comparable to E I Q ~ ,  F,((Q)) = Po(g’) = Fo(y), and 
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(3 .7b)  

where cos x = B cos A( 1 - 1Mz)i = (Ko/Kn)*, sin x = sin A/( 1 -.Mi)* = 0/K,8, 

t a n x  = tanA/B, d x / d y '  = KoK;tO'. 

Note that dg'ldy = secx, KO = K,-02, and that we have replaced cosA (not cosx) 
by unity, and y by jj, throughout (3 .7 )  except in the leading term (cf. 0 2.1).t 

The outer expansion of the inner solution ($o+e$l+ ...), according to (2.24) and 
(2.25), share a domain of validity with the inner expansion of the outer solution 
($,+ ...) in 1 < < 8-l where matching is achieved after identifying 

The induced upwash and, hence, the inner solution is completely determined. Terms 
in ($o + e&) not matched a t  this stage are those from the inner solutions belonging to 
order 

IPI-'I1nPI, 1c1-1, IlnPI2, eIlnP1, e. (3 .9)  

These should find their counterparts in $1 which includes the nonlinear correct.ions 
to the outer solution. 

The upwash function v y  is dominated by a logarithmically large term 

l d  

8nFo dY 
-(sinArg)ln 2 = -- -- 151 tn[ 

--- 

the part proportional to dF0/dy represents the important influence of the near wake, 
the part proportional f o d x / d j j  gives the self induced velocity of the bound vortices. 
These, together with other competing contributions, lead generally to a maximum 
induced upwash near the tip on the aft wing panel and a maximum induced downwash 
near the tip on a swept-forward panel, as noted earlier by Cheng (1978b, p. 17).  

In  the very special limit corresponding to an unyawed straight wing (0 -+ 0 ) ,  the 
upwash correction determined from ( 3 . 7 ~ )  and (3 .7b)  agrees with the linear subsonic 
results of Jones & Cohen (1957) .  Interestingly, for a symmetric swept wing, i.e. 
Zc(jj) = mJjjI, the last integral of v? diverges in approaching the wing apex like 

- 
- sinA - v~ - --r0(o)- 

47lg * 
(3.11) 

This agrees with the downwash induced by the bound vortices on the opposite wing 
panel computed according to the Biot-Savart law. It exhibits clearly a non-uniformity 
a t  jj = O(e). 

We point out in passing that the outer solution involving the higher-order coefficient, 
gl, has been studied in the inner limit in Cheng & Meng (1979b) for a straight oblique 

t For oblique wings (0' = 0 ) ,  8," is precisely the in Cheng & Meng (1979a, b ) .  
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wing, where matching with the inner solution, including all terms shown in (2.24), 
(2.25) and (2.26), has been demonstrated. 

4. Straight oblique wings 

cen t r ehe  can be assumed to be straight, i.e. 0' = 0, p.d.e. (2.5) reduces to 
For applications to the type of oblique wings considered by Jones (1971, 1977), the 

subject to errors of 0 ( s 2 ) .  If tj is taken as a normalized time variable, (4.1) can be 
interpreted as one governing a 2D transonic small-disturbance flow near the quasi- 
steady limit, in which the RHS represents an unsteady correction. The perturbation 
solution ($o + 
applicable to a rather useful class of wing geometry; the reduced problems in this 
case can be solved once for all span stations. These will be discussed in $5 4.1 and 4.2 
below. 

+ . . .) under 0' 3 0 also admits a local-similarity in $o and in 

4.1. An unsteady analogy with a 2 0  transonicJEow 

To bring out more precisely the nature of the analogy in question, we introduce 

($7 = $+€K$ep,  i -= @ / E 0 .  (4.2) 

p.d.e. (4.1) then takes the form 

familiar in most nonlinear analysis of unsteady transonic flows (Landahl 1962; 
Oswatitsch 1962; Timman 1962). The equations for the characteristics and the shock 
relations, (2.10) and (2.13), also go over correctly, upon substituting (4.2), to the 
unsteady transonic system in question, and the continuity requirements on 6s and 
$2, (2.9), remain unchanged. The wing boundary condition (2.8) becomes 

The far-field description for v = $o + + eKk6f P based on the expressions for &, 
and of (2.24) and (2.25), with a /&  replacing €0 a / @  and 0' = 0 is precisely that 
describing the solution to (4.3) a t  large near the quasi-steady limit. One must 
note that the induced-upwash term eK$& in ($7, (4.2), cancels out the corresponding 
term in from (2.25), and therefore the resultant far-field description for 9 is 
independent of the influence of the far-wake vorticity. Hence, our inner airfoil prob- 
lem is mathematically equivalent to that of a (special) unsteady transonic airfoil 
pertaining to the nonlinear (lower-frequency) domain governed by p.d.e. (4.3) near 
the quasi-steady limit, with a wing-surface condition (4.4), and time-dependent 
locations of the leading and trailing edges. The far-wake influence of the oblique-wing, 
as well as the wing bend and wing twist, thus appear as additional incidence corrections 
in the equivalent unsteady problem. 
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The foregoing examination indicates that the solution to the oblique-wing problem 
can be generated from an unsteady 2D calculation based on (4.3)) for which existing 
numerical procedure, for example, those using alternating direction implicit algo- 
rithms similar to Ballhaus & Goorjian (1977), can be adapted. The crucial input to 
such an application lies, of course, in t'he incidence correction. To utilize fully the 
(available) computer storage and time for the analysis, the description @ cp based on 
(2.24) and (2.25) should be used a t  the far boundary. (The values of r;, fli and 8; 
in (2.25) can be taken from those determined from the previous time step or from 
a rough integration of (4.3) and (4.4) with @: = 0.) 

The approach via this unsteady analogy promises an alternative solution procedure 
without the requirement for the local similarity (cf. (4.5) below) as well as providing 
a method for capturing shock waves on oblique wings without the difficulty associated 
with the re-expansion singularity discussed earlier (5 2.4). Sample calculations via 
the unsteady analogy and their comparison with the perturbation solutions have been 
given in Cheng & Meng (19793) for a subcritical case.t From the viewpoint of unsteady 
transonic-flow analysis, it is of interest to point out that the treatment of the non- 
uniformity at  the shock root described in § 2.3 applies equally well to the corresponding 
problem arising from the unsteady perturbation considered by Ehlers (1974)) Traci, 
Albano & Farr (1976), Hafez, Rizk & Murman (1977) and Fung, Yu & Seebass (1978). 

4 .2 .  Local similarities 
Owing to the linearity, the 3D correction to $, q&, can be decomposed into suitably 
scaled separate parts. For a certain class of oblique-wing geometry, these separate 
parts have similarity solutions independent of 9, as does the basic solution $o. This 
wing class requires, in addition to 0' = 0, or [@'I 4 1, that the basic wing section at 
each span station be generated from a single airfoil shape of the same thickness ratio 
at a fixed incidence. More specifically, it  requires a form of wing co-ordinates 

where c ^ ( Q )  is the ratio of the local wing chord c ( 9 )  to the root chord co. Implicit is that 
B = 0 is a straight axis on the wing; the planform, as well as the functions gB(y )  and 
I(y), are otherwise quite arbitrary. 

For this case, we introduce the variables (with b' = sec Ab) 

2 = 2/t  = 2x'/c(Q), 2 3 E/t = 2a*z'/c(Q), 

$/2 = go + eOtrgl + ,[Kg CI(y") + I (# )  + 02;(y")] iZ - s K i  Cf 2 + . . . , 

F cos A$ = y'/b', (4.6) 

and assume 

(4-7) 

where 4,,, g1, and gS are independent of y", and 2' = de/dy". The separation into i1 and 

t The unsteady solutions were obtained by Dr T. Evans, University of East Anglia, using 
a procedure similar to that of Ballhaus & Goorjian (1977).  With the inclusion of E @ ' $ ~  on the 
right-hand side of (4.3), the unsteady analogy can be used as a procedure for solving p.d.e. 
(2.6) with a non-vanishing centre-line curvature. 

18 FLM 97 
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& allows the induced-upwash effect to be treated independently of the spanwise- 
compressibility correction. The p.d.e. (2.16) and (2.18) become in this case 

The right-hand member of (4.8 b )  arises from 8/89  = a/ay" - (Z/Q ( 2  8 /82  + x" a/az). The 
conditions on wing surfaces and the wake, (2.17) and (2.19), give 

a a a a 
(26.) W =#*, (&) W =o, (&) W = 1 ;  (4.9a, b,  c) 

and 

t6OdTV = u60dTV = ' 9  1615dTV = U6LdTV = n62dTV = u6ZdTV = O .  
(4.10a, b,  c) 

Consistent with the similarity structure of $/t, (4.7), the equation of the shock 
boundary (2.21) takes the form 

2 / t  = @(Z) + e@F(Q) e(2) + e[Ki cf(S) + f(g) + @2&] 5 $ ( Z ) .  (4.11) 

The shock relations transferred to the unperturbed shock boundary, i.e. ( 2 . 2 2 )  and 
(2.23), now read as, a t  2 = %(x"),t 

( 4 . 1 2 ~ )  

(4.12b) 

( 4 . 1 2 ~ )  

(4.13a, b,  c) 

Approaching the outer limit, \[I = Ig/eI + co, p.d.e. (4.8a, b )  admits the develop- 

Kn - (Y + 1) C&> = - ( a % y w ,  
2% - (Y + 1 )  + $$o,,) = - z(ag/ax") ( a q l a z ) ,  
- (7 + 1)  <& + zf $oz) = - z(azp/az) ( a g / a z )  

uhn = + 2?60~n = u $ ~ +  5$6,,d1 = 0. 

men ts 

These jump conditions for and & are not the same as those for the (formal) weak solutions 
of p.d.e. (4.8b) and (4 .8~) .  
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+ KnZ2/lc12] 2/lc12+ (@2+&Z)/1cI2+ ... . ( 4 . 1 4 ~ )  

These results are recoverable (completely) from the far-field expansion for 

$ = $o+s$l+... 

in the more general case, (2.24) and (2.25), through transformations (4.6) and (4.7) 
and the relations for the coefficients 

(4.16 a) 

(4.16b) 

A 

ff, = OEZF,+[& + C + f + &  F2* (4 .16~)  

We note that, according to the last of (4.15), 

The $ in (lnc^+ i) above explains the formal difference of (In + i) in (2.26) and 
In in the second term inside the curly bracket in (4.14b). 

The source strength o1 can be explicitly evaluated in terms of & and F$ in this 
case with the help of the Green theorem, unaffected by the presence of imbedded 
shocks, 

(4.17) 

where CZ = 416 and 6. = 8/ĉ  = 2 +a" are the leading and trailing-edge locations in 2, 
respectively. Appendix I11 in Cheng & Meng (1979b) gives details of the derivation. 

With cf known, ways to control the induced upwash by wing twist and wing bend 
through (4.7) are evident. From the form of solution (4.7) the similitude of the 3D 
flow structure is also apparent. 

5. Examples and discussion 
Demonstration of solutions to the reduced problem is considered essential for the 

present study, inasmuch as their existence and uniqueness have not been thoroughly 
investigated. The present work is limited by the assumptions of a high aspect ratio 
and of the small disturbance; it is not a t  all apparent that the theory may adequately 
predict the inviscid aerodynamic characteristics to a degree enjoyed by the classical 
lifting-line theory. In  addition, the possibility of committing algebraic errors in the 
present work is not necessarily low. Thus a direct comparison with 3D solutions ob- 
tained from a more exact full-potential equation is considered an important part of 
the present study. 

.18-2 
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5.1. Procedure of computation: examples of similarity solutions 

Line-relaxation methods are used to solve the algebraic systems of the difference 
equations for the similarity solutions $o, &, and $ z ;  the methods employ Murman’s 
type-sensitive difference operators, including a shock-point operator (Murman & Cole 
1971, Murman 1974). The basic computer code for fi0 is adopted from one used earlier 
in Hafez & Cheng’s (1977a, b )  studies, improved in thefar-field description with ( 4 . 1 4 ~ )  
and in the use of a higher-order convergence acceleration scheme. The doublet 
strength a and z>d in ( 4 . 1 4 ~ )  are determined by a least-square fit of data near and at 
the far boundary. The inclusion of the doublets and the nonlinear terms shown in 
( 4 . 1 4 ~ )  have improved substantially the accuracy and internal consistency of the 
numerical solutions at  the far boundary. The basic program will also furnish input 
data for the relaxation solutions using shock-fitting algorithms (Hafez & Cheng 
1977 b )  which was not needed, however, in the shocb-free examples considered below. 

The procedures for $1 and 6, solving the linear p.d.e.’s, with conditions on the x 
axis and the far-field description, (4.8)-(4.17), are similar to that for fro. The pro- 
grams are simpler in that the transition boundary is fixed to the sonic boundary for 
$,,, but it requires a larger storage for the inclusion of $o in addition to the $lls obtained 
in previousiiterations. The same grid with non-uniform mesh is employed for $,,, $1, 

and q&, covering a region 121 < 6, 121 < 6, with a total of 81 x 65 grid points. The 
leading edge is made to locate at  2 = - 1, and the trailing edge at  2 = 1 (i.e. a“ = - 1, 
6 = 1)) any departure of a” from - I ‘is accounted for by changing .” into [.” + (1 +ti)] 
in (4.8) through (4.17). The case I.”] = 1 corresponds to an oblique-wing planform 
with fore-and-aft symmetry about the (straight) centre-line. The Kutta condition is 
implicit in the programs in requiring the continuity of $oz, & and #% at the trailing 
edge. 

The iterative solutions use a relaxation factor 1.8 in the elliptic region and 0.8 in 
the hyperbolic region; typically 200 line-sweeps are needed for the convergence of 
the circulations to within The calculation for $1 involves more work, and re- 
quires fifteen (1 5 )  minutes on an IBM 303 1 , using double-precision arithmetic. 

As examples, we apply the solution procedure to oblique wings with the section 
function .Z*(x) generated from the N.A.S.A. 3612-02, 40 airfoil, scaled to an arbitrary 
thickness. For the present purpose, we assume that the straight axis ( 2  = 0) coincides 
with the mid chord of each wing section; the spanwise distribution of the wing chord 
is, however, left arbitrary. In this application, it suffices to set the thickness-to- 
camber ratio 7/ct equal to unity, thus, replacing all ct by r in the scales entering the 
definitions of z“ and 4, as well as I;,, 0 and E .  The determination of and $z 
requires the specification of the component similarity parameter K,. 

Figure 3 presents computed surface distributions of $oe (thin solid curves), J12 

(heavy solid curves), and 4% (dash curves) for K ,  = 3.6. The ‘ u )  and ‘ 1 ’  refer to the 
upper and the lower surfaces. The peak of ($o)e occurs near the mid-cord point and 
lies slightly below the critical value K,/(y+ 1) = 1.50. The surface values of (&)$ 
which arise from the spanwise variation of the compressibility correction are seen 
to be numerically small as compared to ($,),. The latter accounts for the incidence 
correction and includes the far-wake vorticity influence. The circulations given by 
the jump of $o, = 2.048, pl = - 0.494, 
and F, = - 2.667, respectively. Their contributions to the potential 4 a t  the trailing 
edge, hence, the rolling moment about the wind axis, are weighted by t, &2dt/dij, 

and $2 at the trailing edge are found to be 
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-1.0 -0.5 0 0.5 x 1.0 

FIGURE 3. Examples of q?02 (-), &, (-), and & (- - -) on the upper and lower surfaces 
of a straight oblique wing at K ,  = 3.6. The airfoil section is N.A.S.A. 3612-02, 40 rescaled to 
an arbitrary thickness; wing has no twist and bend; local incidence is zero. 

and &[Kik:  + I+ 02&], respectively. For a planform which is symmetrical with 
respect to y" = 0 (not ij = 0) ,  II', is also symmetric. The induced upwash in this case 
is positive (@I < 0 )  on an aft panel and negative (el > 0)  on a fore panel, as noted 
earlier. Therefore, the last two of the three weighting factors mentioned are both 
negative on an aft panel and positive on a fore panel. It is, thus, seen from this example 
that, with the negative F1 and P,, the inviscid 3D effects will give rise to an un- 
balanced rolling moment (as well as pitching moment). The asymmetrical forces, if 
unchecked, will tend to raise the aft panel and lower the fore panel. 

The least-square fit of the doublet strengths determined from the relaxation 
solution fi0 of figure 3 are & = 0.2472 and & = 0.0958; with these and the value of 
eo = 2.048, the source strength in the far field for fil is determined from (4.17) as 

= 0.9270. We note in passing that the program for computing fil is relatively 
straightforward and the result can be reproduced quite well by computing q?o at a 
slightly different incidence, taking the difference of the two fio)s, and normalizing. 

Similar computations have been performed for other values of K,, and other airfoil 
sections, including cases with slightly supercritical (2D) component flows. 

- 
X 

h 
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5.2. Elliptic planform: comparison with full-potential solutions 

Numerical results from the full-potential equation corresponding to cases analysed 
are generated from one version of A. Jameson’s 3D codes ‘FLO 22’ (Jameson 1974, 
Jameson & Caughey 1977), which was applied with suitable implementations for 
oblique-wing analyses at  N.A.S.A. Ames Research Centre, and at Grumman Aero- 
space Corporation Research Department. We point out that the FLO 22 data 
from Ames and from Grumman are not identical owing mainly to the use of dif- 
ferent meshes. The availability of data from two sources is helpful in delineating the 
nature of any discrepancy between our theory and the more exact 3D program. Data 
from the latter is still influenced by the mesh size, spacing of the span stations, number 
of iterations, and the detail description of the leading-edge geometry. 

A number of FLO 22 runs have been made with free-stream Mach number, swept 
angle, wing-thickness, etc., chosen to give the proper value of K,, employing the 
same basic airfoil section (N.A.S.A. 3612-02,40). A symmetric elliptic planform is 
used in each case; wing twist and wing bend are assumed to be zero. Comparisons 
with those based on the similarity solutions has been made in a number of cases 
(Cheng & Meng 1979b). The comparison shown in figure 4 may be considered as being 
typical among most cases involving high subcritical and slightly supercritical com- 
ponent flows. 

The oblique elliptic wing considered in figure 4 has a 6 yo thickness ratio, with the 
major-to-minor axes ratio of 20, and a sweep angle of 22.5’. The free-stream Mach 
number is N, = 0.8242, which makes M, = 0.7615 and K,  = 3-60, 0 = 1.003 and 
e = 0.1277 in the analysis of tj 4. t  The pressure coefficient c, = (p -pa)/&, U: may 
therefore be computed from 

dt  
C, = cos2 Rck = - 2 cos2 h(a/M,)* {(q$J5+s0 - 46) 

with data from figure 3. The critical C, value where the (2D) component flow becomes 
sonic is Cg* = -0.470 in this case.$ The surface C, values at three span stations, 
fj = - 0.69, y” = 0, and y” = 0.69 are shown in figures 4 (a, b, c ) ,  respectively. The FLO 22 
data from Ames (in small crosses and ‘ V ’) and from Grumman (in small circles) 
are seen to be quite close except near the leading edge. In approaching the latter, the 
small-disturbance assumption of our theory also breaks down. The agreement of the 
FLO 22 data with our values computed on the basis of data from figure 3 (in solid 
curves) must be considered as being better than anticipated, inasmuch as the relative 
error in our theory is of an order determined by the larger of 7p and e2 (to be precise). 
In  the present case, 79 = (0*06)* = 0.153! 

Encouraging is that the degree of agreement with the FLO 22 data appear to 
deteriorate little with increasing wing-thickness ratio or reducing aspect ratio. 

t The value of E for figures 4 and 5 were computed with AR, taken as AR, = AR, cos A 
which is permissible under the present theory [cf. remarks below (3 .7b)l .  

Y-1 
$ c,** = [ ( ~ + 1 ) / 2 ( 1 + ~ ~ ~ ) ] - ~ “ ~ - ” - 1  cOS*A 2 -2[a/M,))cosBRK,/(y+1), 
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FIQURE 4(a). For legend see p. 551. 

Figure 5 shows a typical comparison for elliptic wings with a thicker (12 yo) airfoil 
section and a lower aspect ratio (major-to-minor axes ratio of 14). The case considered 
has a free-stream Mach number 0.7677, a yaw angle 30'. This gives JIn = 0.6648, 
K ,  = 3.45, E = 0.1448, and 0 = 1.062; also cf* = -0.G89. The cp  values were 
computed from the present theory using data obtained for &, etc. a t  K ,  = 3.40 
similar to those shown in figure 3. To conserve space, only the comparison made a t  
the span station y" = 0.8 is shown. The present results are shown in heavy curves with 
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FIGURE 4(b ) .  For legend see p. 551. 

open circles; the corresponding FLO 22 data (from N.A.S.A. Ames) are presented as 
thin curves. The degree of agreement with the FLO 22 data are quite similar to that 
in the preceding comparisons. In this case, a small supercritical region appear in the 
aft wing panel, as anticipated (there are at least five surface grid points in the 
supercritical region). More extensive comparisons are given in Cheng & Meng (19794.1 

One major contribution to the 3D effect is the incidence correction which accounts 
t Close examination of the FLO 22 data in this case reveals a slight spanwise fluctuation in 

surface pressure, attributable to an iterative convergence problem. The slightly larger dis- 
crepancies found in the cp minimum and near the trailing edge may be related to the latter 
difficulty. 
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FIGURE 4. Comparison with a major-to-minor axes ratio of 20 a t  22.5" sweep and a free-stream 
Mach number 0.8242. The present result is shown in solid curve. The 0, distribution at: (a) 
span station = 0.69. V, x , N.A.S.A. 
Ames (FLO 22) ; 0, 0,  Grumman (FLO 22) ; - , lifting line. u = O", R = 22.5", AR, = 20. 

= -0 .69;  ( b )  span station fj = 0 ;  (c) span station 

for the upwash induced by the far-wake vorticities, computed from Pi'' of ( 3 . 7 ~ )  via 
(3.7b) and ( 4 . 1 6 ~ ) .  The adequacy of this upwash calculation has already been demon- 
strated in examples pertaining to the linearized problem (Cheng 1978a, b ) ;  therefore, 
the good agreement reported here should not be too surprising.? Worthy of note in 

t The scales of the span loading in figure 3 of Cheng 1978a, and in figures 4-6 of Cheng 
19786, should all be reduced by a factor of ten. 
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FIGURE 5. Comparison for a 12 % thick, elliptic oblique wing with an axes ratio 14 at 30" yaw 
and M ,  = 0.7677. This graph gives surface 0, at span station jj = 0.79. N.A.S.A.Ames FLO 22: 
-, upper ; - - - , lower. Present theory: -0-, upper; - -0- -, lower. 

this connexion is the use of the transonic similarity parameter K ,  = (1  - M2,)/Mna3, 
and the retention of the cosR factor in computing & and cp ,  which prove to be 
crucial in maintaining an accurate leading approximations, and are partly responsible 
for the good agreement achieved here. 

It may be pointed out that existing 3D computer codes based on the full-potential 
equations do not satisfy exactly the condition across a trailing vortex sheet (Jameson 
1974; Jameson & Caughey 1977). Thus, its validity also requires the small-disturbance 
assumption, strictly speaking. The value of the program lies, of course, on its ability 
to describe the flow field around the leading edge and near the trailing edge, where 
the small-disturbance approximation breaks down or becomes less accurate, assuming 
that problems of convergence with respect to mesh size, and to iteration, may not 
cause inaccuracy. The limitation on the computer storage available to the current 3D 
flow-field computation programs is well known. With this limitation, it is not clear 
whether the grid distributions in these programs are sufficiently refined for the 
purpose of describing the induced up-wash of the trailing vorticities in the far wake, 
so crucial to a high aspect-ratio wing. This uncertainty has been erased, in part, by 
the consistent comparisons shown above. 
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